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T
he existence of surface plasmons was
first demonstrated by observing en-
ergy losses produced in their interac-

tion with free electrons.1,2 Following those
pioneering studies, electron beams have
revealed many of the properties of plas-
mons through energy-loss and cathodolu-
minescence spectroscopies, which benefit
from the impressive combination of high
spatial and spectral resolutions that is cur-
rently available in electronmicroscopes and
that allows mapping plasmon modes in me-
tallic nanoparticles and other nanostructures
of practical interest.3�5 However, plasmon
creation rates aregenerally low, thus rendering
multiple excitations of a single plasmonmode
by a single electron extremely unlikely.
From a fundamental viewpoint, the ques-

tion arises, what it the maximum excitation
probability of a plasmon by a passing elec-
tron? This depends on a number of param-
eters, such as the interplay between
momentum and energy conservation dur-
ing the exchange with the electron, the
spatial extension of the electromagnetic
fields associated with the electron and the
plasmon, and the interaction time, which
are in turn controlled by the spatial exten-
sion of the excitation and the speed of the
electron. One expects that highly confined

optical modes, encompassing a large den-
sity of electromagnetic energy, combined
with low-energy electrons, which experi-
ence long interaction times, provide an
optimum answer to this question. This in-
tuition is corroborated here by examining
the interaction between free electrons and
graphene plasmons. The peculiar electronic
structure of this material leads to the emer-
gence of strongly confined plasmons (size
<1/100 of the light wavelength) when
the carbon layer is doped with charge
carriers.6�10 Graphene plasmons have been
recently observed and their electrical
modulation unambiguously demonstrated
through near-field spatial mapping11�13

and far-field spectroscopy.14�16 These low-
energy plasmons, which appear at mid-
infrared and lower frequencies, should not
be confusedwith the higher-energyπ and σ
plasmons that show up in most carbon
allotropes, and that have been exten-
sively studied through electron energy-loss
spectroscopy (EELS) in fullerenes,17,18 nano-
tubes,19 and graphene.20�23 These high-
energy plasmons are not electrically tun-
able. We thus concentrate on electrically
driven low-energy plasmons in graphene.
Despite their potential for quantum optics
and light modulation,24�26 the small size of

* Address correspondence to
javier.garciadeabajo@icfo.es.

Received for review October 15, 2013
and accepted November 12, 2013.

Published online
10.1021/nn405367e

ABSTRACT We show that free electrons can efficiently excite plasmons in

doped graphene with probabilities in the order of one per electron. More precisely,

we predict multiple excitations of a single confined plasmon mode in graphene

nanostructures. These unprecedentedly large electron-plasmon couplings are

explained using a simple scaling law and further investigated through a general

quantum description of the electron�plasmon interaction. From a fundamental

viewpoint, multiple plasmon excitations by a single electron provide a unique

platform for exploring the bosonic quantum nature of these collective modes. Not

only does our study open a viable path toward multiple excitation of a single

plasmonmode by a single electron, but it also reveals electron probes as ideal tools

for producing, detecting, and manipulating plasmons in graphene nanostructures.
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the graphene structures relative to the light wave-
length (see below) poses the challenge of controlling
their excitation and detection with suitably fine spatial
precision. With the use of currently available subnan-
ometer-sized beam spots, free electrons appear to be a
viable solution to create and detect graphene plasmons
with largeyieldandhigh spatial resolution.Asafirst step in
this direction, angle-resolved EELS performed with low-
energy electrons has been used to map the dispersion
relation of low-energy graphene plasmons,27,28 as well as
their hybridization with the phonons of a SiC substrate,29

although this technique has limited spatial resolution.
The probabilities of multiple plasmon losses, as

observed in EELS30 and photoemission31 experiments,
are well-known to follow Poisson distributions.18,32,33

Previous studies have concentrated on plasmon bands,
where the electrons simultaneously interact with a large
number of plasmon modes. We are instead interested in
the interaction with a spectrally isolated single mode.
In this article, we show that a single electron can

generate graphene plasmons with large yield of order
one. We discuss the excitation of both propagating
plasmons in extended carbon sheets and localized
plasmons in nanostructured graphene. The excitation
probability is shown to reach a maximum value when
the interaction time is of the order of the plasmon
period. Our results suggest practical schemes for the
excitation of multiple localized graphene plasmons
using electron beams, thus opening new perspectives
for the observation of nonlinear phenomena at the
level of a few plasmons excited within a singlemode of
an individual graphene structure by a single electron.

RESULTS AND DISCUSSION

Plasmon Excitation in Extended Graphene. Before dis-
cussing confined plasmons, we explore analytical limits
for electrons interacting with a homogeneous gra-
phene layer. The dispersion relation of free-standing
graphene plasmons can be directly obtained from the
pole of the Fresnel coefficient for p polarization,7 which
in the electrostatic limit reduces to

rp ¼ 1
1 � iω=2πk )σ

(1)

Here,σ(k ),ω) is the conductivity, and k ) andω are the light
parallel wave-vector and frequency. Because of the trans-
lational invariance of the carbon layer, the full k ) depen-
dence of the conductivity σ can be directly incorporated
in eq 1 to account for nonlocal effects, which include the
excitation of electron�hole pairs. The dispersion diagram
of Figure 1a, which shows Im{rp} calculated in the
random-phase approximation34,35 (RPA) under realistic
doping conditions (Fermi energy EF = 0.5 eV, correspond-
ing to a carrier density n= (EF/pνF)

2/π= 1.84� 1013 cm�2,
where νF ≈ 106 m/s is the Fermi velocity), reveals a
plasmon band as a sharp feature outside the regions
occupied by intra- and interband electron�hole-pair

transitions. We justify the use of the electrostatic approx-
imation to describe the response of graphene because
the plasmon wavelength is much smaller than the light
wavelength in the plasmonic region.

Under theseconditions, anelectroncrossing thecarbon
sheet with constant normal velocity ν has a probability5

Γ^(ω) ¼ 4e2

πpv2

Z ¥

0

k2)dk )

(k2)þω2=v2)2
Imfrpg (2)

of lossing energy pω (see Methods for more details).
Likewise, an electronmoving along a path length L parallel

Figure 1. Excitation of graphene plasmons by electron
beams. (a) Frequency andparallel-wave-vector dependence
of the Fresnel reflection coefficient rp for p polarized light,
calculated in the random-phase approximation (RPA) and
showing plasmons and interband/intraband electron�
hole-pair transitions in doped extended graphene. The Fermi
energyand intrinsicdamping timeare EF=0.5eVand τ=0.5ps,
respectively. An electron moving with velocity v couples pre-
ferentially to excitations in the k )ν ∼ ω region. (b) Electron
energy-loss spectra for an electron incident normally to a
homogeneous graphene sheet under the same conditions as
in (a) for twodifferentelectronkinetic energies (brokencurves),
compared with the universal analytical expression for the
plasmon contribution derived in the Drudemodel (solid curve,
eq 6). The inset shows the integral of the latter over the pω< EF
region as a function of electron energy.
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to the graphene experiences a loss probability (see
Methods)

Γ )(ω) ¼
2e2L
πpv2

Z ¥

ω=v

dk )ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2) �ω2=v2

q e�2k )z0 Imfrpg (3)

where z0 is the distance between graphene and the
electron. These probabilities are determined by Im{rp},
which is represented in Figure 1a. Clearly, losses around the
k ) ∼ ω/ν region are favored.

It is instructive to evaluate eqs 2 and 3 using the
Drude model for the graphene conductivity7

σ(ω) ¼ e2EF

πp2
i

ωþ iτ�1 (4)

where τ is a phenomenological decay time. The latter
determines the plasmon quality factor Q = ωτ ∼
10�60, as measured in recent experiments.11�13,15,16

This model works well for photon energies below the
Fermi level (pω< EF), but neglects interband transitions
that take place at higher energies. In the ωτ . 1 limit,
we can approximate

Imfrpg � πkSP) δ(k ) � kSP) )

where

kSP) ¼ (p2ω2=2e2EF) (5)

is the plasmonwave vector (broken curve in Figure 1a).
When this approximation is used in eqs 2 and 3, the
plasmon contribution to the loss probability reduces to

Γ^(ω) � 2p
EF

s2

(1þ s2)2
(6)

Γ )(ω) �
pωL

vEF

θ(s � 1)ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 1

p e�kSP) z0

where

s ¼ 1
2R

v

c

pω

EF

and R ≈ 1/137 is the fine-structure constant. For a
perpendicular trajectory, eq 6 has a maximum at s = 1
(Figure 1b). Its integral over the pω< EF region, inwhich
the plasmon is well-defined, shows a maximum prob-
ability >35% for an electron energy ∼215 eV when we
take EF = 0.5 eV. This is an unusually high plasmon yield
for electrons traversing a thin film. However, this
probability is spread over a continuumof 2D plasmons.
In what follows, we concentrate on localized plasmons
in finite graphene islands, which feature instead a
discrete spectrum, thus placing the entire electron-
plasmon strength on a few modes, and consequently,
increasing the probability for a single electron to excite
more than one plasmon in a single mode.

Plasmon Excitation in Graphene Nanostructures. Doped
graphene nanoislands can support plasmons, as
recently observed through optical absorption

measurements.15,16 For small islands, the concentra-
tion of electromagnetic energy that characterizes
these plasmons is extremely high, therefore producing
strong coupling with nearby quantum emitters.9 Like-
wise, the interaction of localized plasmons with a
passing electron is expected to be particularly intense.
This intuition is put to the test in Figure 2, where we
consider a 100 eV electron interacting with a 100 nm
graphene disk doped to a Fermi energy EF = 0.4 eV. We
calculate the electron energy-loss probability using
classical electrodynamics,5 assuming linear response,
and describing the graphene through the Drude con-
ductivity of eq 4, which we spread over a thin layer of
∼0.3 nm thickness, as prescribed elsewhere.9 We
investigate both a parallel trajectory, with the electron
passing 5 nm away from the carbon sheet, and a
perpendicular trajectory, with the electron crossing
the disk center. Figure 2 only shows the lowest-energy
mode that is excited for each of these geometries,
corresponding tom = 1 andm = 0 azimuthal symmetries,
respectively. An overview of a broader spectral range (see
Methods, Figure 7) reveals that these modes are actually
well isolated from higher-order spectral features within
each respective symmetry. Because we use the Drude
model, the width of the plasmon peaks in Figure 2
coincides with pτ�1 (see below), which is set to 1.6 meV,
or equivalently, we consider amobility of 10000 cm2/(V s),
which is a moderate value below those measured in
suspended36 and BN-supported37 high-quality graphene.

The area of the plasmon peaks is a τ-independent,
dimensionless quantity that corresponds to the num-
ber of plasmons excited per incident electron. For the
m= 1mode (parallel trajectory), we find∼0.4 plasmons
per electron. This leads us to the following two im-
portant conclusions: (i) the probability of multiple
plasmon generation is expected to be significant, and
its study requires a quantum treatment of the plasmo-
ns to cope with the bosonic statistics of these modes,
as described below; and (ii) linear response theory,
which we assume within the classical electromagnetic
calculations shown in Figure 2, is no longer valid because

Figure 2. Plasmon excitations in a graphene nanodisk.
Electron energy-loss probability for two different electron
trajectories exciting plasmon modes of different azimuthal
symmetry m, as shown by labels.
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nonlinear and quantum corrections become substantial.
These two conclusions are further explored in what
follows, but first we discuss a universal scaling law for
the energy-loss probability that is also relevant to the
description of multiple plasmon processes.

Electrostatic Scaling Law and Maximum Plasmon Excitation
Rate. In electrodynamics, the light wavelength intro-
duces a length scale that renders the solution of
specific geometries size dependent. In contrast, elec-
trostatics admits scale-invariant solutions, which have
long been recognized to provide convenient mode
decompositions, particularly when studying electron
energy losses.38�40 Modeling graphene as an infinitely
thin layer, its electrostatic solutions take a particularly
simple form.15We provide a comprehensive derivation
of the resulting scaling laws in theMethods section, the
main results ofwhichare summarizednext.We focusona
spectrally isolated plasmon of frequencyωp sustained by
a graphene nanoisland of characteristic size D (e.g., the
diameter of a disk) and homogeneous Fermi energy EF.

Assuming the Drude model for the graphene con-
ductivity (eq 4), the plasmon frequency is found to be

ωp ¼ γp
e

p

ffiffiffiffiffi
EF
D

r
(7)

whereγp is adimensionless, scale-invariant parameter that
only depends on the nanoisland geometry and plasmon
symmetry under consideration (see eq 31). In particular,
we have γp = 3.6 for the lowest-order axially symmetric
plasmon of a graphene disk (m = 0 azimuthal symmetry),
which is the lowest-frequency mode excited by an elec-
tron moving along the disk axis. Also, we find γp = 2.0 for
the lowest-order m = 1 mode, which can be excited in
asymmetric configurations. It is important to stress that
eq 7 reveals a linear dependence of ωp on (EF/D)

1/2.
Furthermore, the average number of plasmons

excited by the electron (i.e., the plasmon yield) reduces
to (see Methods, eq 34 and 35)

Pclap � 1
μ
Fp

μ

ν

� �
(8)

within this classical theory. Here, we have defined the
two dimensionless parameters

μ ¼
ffiffiffiffiffiffiffiffi
EFD

p
e

¼
ffiffiffiffiffiffiffiffi
EFD

Rpc

r
(9a)

ν ¼ pv

e2
¼ v

Rc
(9b)

as well as the dimensionless loss function

Fp(x) ¼ x2

�����
Z

dl exp(iγpxl )fp(l )

�����
2

(10)

The integral is over the electron path length l in units
of D, whereas fp is the dimensionless scaled plasmon
electric potential defined in eq 36, which is calculated

once and for all following the procedure explained in
the Methods section (see eq 39 and beyond).

We show characteristic examples of fp and Fp in
Figure 3 for electrons crossing the center of a graphene
disk following different oblique trajectories. As fp is
proportional to the electrostatic potential associated
with the plasmon, it is a real function of position. For
the m = 1 mode considered in Figure 3, fp vanishes at
the axis of rotational symmetry and takes large values
near the disk edges, leading to antisymmetric dip-peak
patterns (Figure 3a). The resulting loss function Fp
(Figure 3b) exhibits oscillations depending on the
relative phase with which the potential fp is sampled
along the electron trajectory (see eq 10). As anticipated
above, this depends on the path length traveled by the
electron during an optical plasmon period (ν/ωp)
relative to the extension of the plasmon (∼D), the ratio
of which is precisely μ/ν. In the excitation of symmetric
plasmon modes (e.g., m = 0), nonoscillating Fp profiles
are obtained, equally characterized by maxima exceed-
ing 1 at μ/ν∼ 2 for electrons passing at a small distance
from the disk (see Supporting Information).

For a relatively grazing trajectory (θ ∼ 80�85�), a
maximum plasmon excitation probability Pp

cla∼ 3(Rpc/
EFD)

1/2 is reached for an electron velocity ν ∼
(1/2)(RcEFD)1/2 (see Figure 3b). As an indicative value,

Figure 3. Scaled plasmon potential and loss function. (a)
Scaled plasmon electric potential fp (see Methods, eq 36)
sampled by different electron trajectories crossing the
center of a graphene disk with different angles relative to
the graphene normal, as shown by labels. (b) Scaled loss
function Fp for the lowest-oderm=1plasmonexcited under
the trajectories considered in (a). The inset shows the
energy-loss probability for a plasmon width of 1.6 meV.
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for a disk of diameter D = 50 nm doped to a Fermi
energy EF = 0.4 eV, similar to those fabricated in recent
experiments,15 which can sustain m = 1 plasmons of
0.21 eV energy, the maximum excitation probability is
Pp
cla ∼ 0.8 and is obtained using ∼50 eV electrons.

These magnitudes can be readily computed for other
disk size anddopingconditions via the scaling laws for the
plasmon frequency ωp � (EF/D)

1/2 (eq 7), the maximum
excitation probability Pp

cla � 1/(EFD)
1/2, and the electron

energy �EFD. Although arbitrarily large values of Pp
cla can

be in principle achieved through reducing EF andD (even
while maintaining their ratio constant, and consequently,
also ωp), the graphene size is limited to D ∼ 10 nm, as
plasmons in smaller islands are strongly quenched by
nonlocal effects.41 With D = 10 nm and EF = 0.4 eV, we
have 0.48 eV plasmons that can be excited by 9 eV
electrons with Pp

cla = 1.8 probability per incident electron.
This result is clearly outside the range of validity of linear
response theory and anticipates large multiple-plasmon
excitation probabilities.

Quantum Mechanical Description. The above classical
formalism follows a long tradition of explaining elec-
tron energy-loss spectra within classical theory,5 under
the assumption that the total excitation rate is small
(i.e., Pp

cla , 1), thus rendering multiple plasmon excita-
tions highly unlikely. This is inapplicable to describe
electron-driven plasmon generation in graphene, for
which we can have Pp

cla > 1. Therefore, a quantum
treatment of the plasmons becomes necessary. We
follow a similar approach as in previous studies of
multiple plasmon losses,18,32,33 here adapted to deal
with a single plasmon mode. Describing the electron
as a classical external charge density Fext(r,t) and the
plasmon as a bosonicmode,we consider theHamiltonian

H ¼ pωpa
þaþ g(t)(aþ þ a) (11)

where the operator a (aþ) annihilates (creates) a plasmon
of frequency ωp, and the time-dependent coupling coef-
ficient is defined as

g(t) ¼
Z

d3rφp(r)F
ext(r, t) (12)

in terms of φp, the electric potential associated with the
plasmon. In the electrostatic approximation, neglecting
the effect of inelastic plasmon decay, it is safe to assume
that φp is real. Notice that g is just the electrostatic energy
subtracted or added to the system when removing or
creating one plasmon (i.e., the integral represents the
potential energy of the external charge in the presence of
thepotential createdbyoneplasmon). TheHamiltonianH
should be realistic under the condition that both the
electron�plasmon interaction time and the optical cycle
are small comparedwith the plasmon lifetime. In practice,
this means that the electron behaves a point-like particle,
or at least, its wave function is spread over a region of size
,ντ. Additionally, we assume the electron kinetic energy
to be much larger than the plasmon energy, so that

multiple plasmon excitations do not significantly change
the electron velocity (nonrecoil approximation).

As the plasmon state evolves under the influence of
a linear term in eq 11 with a classical coupling constant
g, it should exhibit classical statistics.42 Indeed, it is easy
to verify that the plasmon wave function

jψæ ¼ eiχ(t)jξ(t)æ (13)

is a solution of Schrödinger's equation H|ψæ = ip∂|ψæ/∂t,
where

jξ(t)æ ¼ exp(�jξj2=2)∑
n

(ξaþ)n

n!
e�inωptj0æ (14)

is a coherent state43 with

ξ(t) ¼ �i
p

Z t

�¥
dt0g(t0)eiωpt

0 þ ξ(�¥)

whereas

χ(t) ¼ �1
p

Z t

�¥
dt0g(t0)Refξ(t0)cos(ωpt

0)gþ χ(�¥)

is an overall phase that does not affect the plasmon-
number distribution. The average number of plasmons
excited at a given time is given by |ξ(t)|2. We thus
conclude that the probability of exciting n plasmons
simutaneoulsy follows a Poissonian distribution

P(n)p ¼ Æψj[(aþ)nan=n!]jψæ ¼ jξj2n
n!

e�jξj2 (15)

which yields a second-order correlation g(2)(0) = 1.
Expressing ξ and g in terms of φp, noticing that

ξ(�¥) = 0 (i.e., no plasmons present before interaction
with the electron), and using a similar scaling as in the
classical theory discussed above, we can write the
probability of exciting n plasmons as

P(n)p ¼ (Pclap )n

n!
exp(�Pclap ) (16)

where Pp
cla = |ξ|2 = μ�1Fp(μ/ν) is the classical linear

probability given by eq 8, which coincides with the
average number of excited plasmons per electron, Pp

cla

= ∑nnPp
(n), and can take values above 1.

Inclusion of Plasmon Losses. Inelastic losses during the
electron�plasmon interaction time have been so far

ignored in the above quantum description. However,

for sufficiently slow electrons or very lossy plasmons,

the interaction time can be comparable to the plasmon

lifetime τ, so that the above quantum formalism needs

to be amended, for example by following the time

evolution of the density matrix F, according to its

equation of motion44

dF
dt

¼ i
p
[F, H]þ 1

2τ
(2aFaþ � aþaF � Faþa) (17)

where the Hamiltonian H is defined by eqs 11 and 12.

The solution to this equation can still be given in
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analytical form:

F ¼ jξæÆξj (18)

where |ξæ is again a coherent state (see eq 14), but we

have to redefine

ξ(t) ¼ �i
p

Z t

�¥
dt0g(t0)eiωpt

0�(t�t0)=2τ þ ξ(�¥) (19)

It is straightforward to verify that eqs 18 and 19 are

indeed a solution of eq 17.
A simultaneous density-matrix description of the

electron and plasmon quantum evolutions involves a
larger configuration space that is beyond the scope of
this paper. We can however argue that the probabil-
ities Pp

(n) corresponding to the electron lossing energies
npωp must still follow a Poissonian distribution if we
trace out the plasmon mode. At t f ¥, all plasmons
must have decayed, so that we can obtain the average
number of plasmon losses from the time integral of the
total plasmon decay rate, Æaþaæ/τ. Again, we find that
this quantity coincides with the classical linear loss
probability Pp

cla, which is now given by

Pclap ¼ 1
τ

Z
dtjξ(t)j2 ¼ 1

p2τ

Z
dω
2π

j~g(ω)j2
(ωp �ω)2 þ 1=4τ2

where ~g(ω) is the time-Fourier transform of g(t). This
expression reduces to Pp

cla = |~g(ωp)/p|
2 (i.e., eq 8) in the

limit of high plasmon quality factor Q = ωpτ . 1.

Multiple Plasmon Generation by a Single Electron. We
show in Figure 4 results obtained by solving eq 16
under the conditions of the most grazing trajectory
from those considered in Figure 3. In particular, the
electron energy is 50 eV, which corresponds to ν≈ 1.9.
The average number of plasmons excited by a single
electron under these conditions reaches a maxi-
mum value slightly above 1, distributed in a ∼ 40%
probability of exciting only one plasmon, a ∼20%
probability of simultaneously exciting two plasmons,
and lower probabilities of generating more than two
plasmons. The peak maximum is observed at μ ∼ 3
(this corresponds for example to D = 50 nm and EF =
0.26 eV), which leads to μ/ν∼ 1.6, slightly to the left of
the main peak observed within linear theory at μ/ν∼ 2
in Figure 3.

The full dependence of the probability of generat-
ing n = 0�3 plasmons on μ and ν is shown in Figure 5.
For large μ, the results approach the linear regime, only
single plasmons are effectively excited, and the highest
probability is peaked around a broad region centered
along the μ = 2 ν line. At small μ's, a more complex
behavior is observed. The double-plasmon excitation
probability is above 20% over a broad range of μ's, and
even the probability of simultaneously generating
three plasmons takes significant values >10% up to
μ ∼ 1. The probability is increasingly more confined
toward the low μ and ν regionwhen a larger number of

plasmons is considered. Notice however the presence
of a dip in that region for single-plasmon excitation,
which is due to transits toward a larger numbers of
plasmons created. A similar effect is observed for n = 2
at even lower values of μ and ν.

CONCLUSIONS AND OUTLOOK

We predict unprecedentedly high graphene-plas-
mon excitation rates by relatively low-energy free
electrons. When a plasmon is highly confined down
to a small size comparedwith the light wavelength, the
dipole moment associated with the plasmon is small
and this limits the strength of its coupling to light.
Direct optical excitation becomes inefficient, and
one requires near-field probes to couple to the
plasmons.11,12 In fact, electrons act as versatile near-
field probes that can be aimed at the desired sample
region. Furthermore, electrons carry strongly evanes-
cent electromagnetic fields that couple with high
efficiency to confined optical modes, thus rendering
the observation of multiple plasmon excitation feasi-
ble. Our calculations show double excitation of a single
plasmon mode with efficiencies of up to 20% per
incident electron in graphene structures with similar
size and doping levels as those produced in recent
experiments.15

Besides its fundamental interest, multiple plasmon
excitation is potentially useful to explore nonlinear
optical response at the nanoscale. In particular, quan-
tum nonlinearities at the single- or few-plasmon level
has been predicted in small graphene islands.45 As the
excitation of strongly confined plasmons by optical
means remains a major challenge, free electrons pro-
vide the practical means to explore this exotic quantum
behavior. In particular, the generation of n plasmons
by a single electron produces an energy loss pnωp,

Figure 4. Double plasmon excitation by a single electron.
The probabilities of exciting a single m = 1 plasmon (Pp

(1),
blue curve) and two plasmons simultaneously (Pp

(2), red
curve) are compared with the average number of excited
plasmons (Pp

cla = ∑nnPp
(n), black curve) for a 50 eV electron

passing grazingly by the center of a graphene disk. The
probability is the same for straight crossing and specularly
reflected trajectories.
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the detection of which can be used to signal the
creation of a plasmon-number state in the graphene
island.
The electron energies for which plasmon excitation

probabilities are high lie in the sub-keV range, which
is routinely employed in low-energy EELS studies,46

as already reported for collective excitations in graph-
ene.27,29 In practice, one could study electrons that are
reflected on a patterned graphene film. Actually, the
analysis of energy losses in reflected electrons was
already pioneered in the first observation of surface
plasmons in metals.2 A similar approach could be
followed to reveal multiple graphene plasmon excita-
tions by individual electrons. Incidentally, low-energy
electron diffraction at the carbon honeycomb lattice
could provide additional ways of observing these
excitations through different diffracted beams, for
which plasmons should be the dominant channel of
inelastic scattering. Inelastic losses in core-level photo-
electrons, which have been used to study plasmons in
semi-infinite31,47 and ultrahin48 metals (the so-called
plasmon satellites), offer another alternative to resolve
multiple plasmon excitations in confined systems.
In practical experiments, the graphene structures

are likely to lie on a substrate, and their size and shape
must be chosen such that the energies of higher-order
plasmons are not multiples of the targeted plasmon
energy. Although for the sake of simplicity the analysis
carried out here is limited to self-standing graphene
structures, it can be trivially extended to carbon islands
supported on a substrate of permittivity ɛ by simply
multiplying both the graphene conductivity (or
equivalently, the Fermi energy in the Drude model)
and the external electron potential by a factor 2/(1þ ɛ).
This factor incorporates a rigorous correction to the 1/r
free-space point-charge Coulomb interaction when
the charge is instead placed right at the substrate
surface. Likewise, the contribution of the image

potential leads to a total external potential at the
surface given by 2/(1 þ ɛ) times the bare potential of
the moving electron. The presence of a surface can
however attenuate the transmitted electron intensity,
so reflection measurements appear as a more suitable
configuration. It should be emphasized that the energy
loss and plasmon excitation probabilities produced by
transmitted electrons coincide with those for specu-
larly reflected electrons, and therefore, the present
theory is equally applicable to reflection geometries,
as indicated in Figure 4. This is due to the small
thickness of the graphene, where induced charges
cannot provide information on which side the electron
is coming from. A detailed analysis consisting in using
an external electron charge Fext(r,t) for a specularly
reflected electron fully confirms this result.
High plasmon excitation efficiencies should be also

observable in metal nanoparticles. One could, for ex-
ample, study electrons reflected on a monolayer of
nanometer-sized gold colloids, which present a similar
degree of mode confinement as graphene. However,
plasmons in noble metals have lower optical quality
factors than those in graphene, thus compromising the
condition that ντ be smaller than the electron wave
function spread (see above). Additionally, the trajec-
tories of sub-keV electrons reflected frommetal colloids
can be dramatically affected by their stochastic distribu-
tions of facets and small degree of surface homogeneity
compared with graphene, the 2Dmorphology of which
can be tailored with nearly atomic detail.49

In summary, graphene provides a unique combina-
tion of surface quality, tunability, and optical confine-
ment that makes the detection of multiple plasmon
excitations by individual electrons feasible, thus opening
a new avenue to explore fundamental quantum pheno-
nema, nanoscale optical nonlinearities, and efficient
mechanisms of plasmon excitation and detection with
potential application to opto-electronic nanodevices.

METHODS

In this section, we formulate an electrostatic scaling law and a
quantum-mechanical model that allow us to describe multiple

excitations of graphene plasmons by fast electrons. The model

agrees with classical theory within first-order perturbation

theory, and provides a fast, accurate procedure to compute

Figure 5. Multiple-plasmon excitation by a single electron. Full μ and ν dependence of the probabilities Pp
(n) of generating

n = 0�3 plasmons under the same conditions as in Figure 4.
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excitation probabilities for a wide range of electron velocities
and graphene parameters.

Eigenmode Expansion of the Classical Electrostatic Potential near
Graphene. Thegraphene structuresunder considerationaremuch
smaller than the lightwavelengths associatedwith their plasmon
frequencies, and therefore, we can describe their response in the
electrostatic limit. The optical electric field can be thus expressed
as the gradient of an electric potential φ in the plane of the
graphene. It is convenient to write the self-consistent relation

φ(r,ω) ¼ φext(r,ω)þ i
ω

Z
d2R0

jr � R0jrR0 3 σ(R
0 ,ω)rR0φ(R0,ω)

(20)

where the integral represents the potential produced by the
charge density induced on the graphene, which in virtue of the
continuity equation, is in turn expressed as (�i/ω)rR 3 j(R,ω) in
terms of the induced current j(R,ω) =�σ(R,ω)rRφ(R,ω). Here, σ is
the 2D graphene conductivity, which we assume to act locally.
These expressions involve coordinate vectors R = (x,y) in the
plane of the graphene, z = 0. Although eq 20 is valid for any point
r = (R,z), we take z = 0 to obtain the self-consistent electric
potential in the graphene sheet. Incidentally, the abrupt change
of σ at the edge of a graphene structure produces a divergent
boundary contribution to the integrand of eq 20. These types of
divergences have been extensively studied in the context of
magneplasmons at the edgeof a bounded2Delectron gas,50 and
more recently also in graphene.51 In practice, we can solve eq 20
numerically by smoothing the edge (e.g., though in-planemodal
expansions of σ and φ). This produces convergent results in
agreement with direct solutions of the 3D Poisson equation.
However, we only use eq 20 in this article to derive formal
relations and scaling laws involving plasmon modes, whereas
specific numerical computations are performed following a
different method, as explained below.

Given the lack of absolute length scales in electrostatics, we
can recast eq 20 in scale-invariant form by using the reduced 2D
coordinate vectors θB = R/D, where D is a characteristic length of
the graphene structure (e.g., the diameter of a disk). Addition-
ally, we assume that the conductivity can be separated as
σ(R,ω) = f(R)σ(ω). For homogeneously doped graphene, f(R)
simply represents a filling factor that takes the value f = 1 in the
graphene and vanishes elsewhere. However, the present form-
alism can be readily applied to more realistic inhomogeneous
doping profiles by transferring the space-dependence of EF to f.
This can be applied to describe inhomogeneously doped
graphene, including divergences in the doping density near
the edges.52 Combining these elements, we obtain

φ(θB,ω) ¼ φext(θB,ω)þ η(ω)
Z

d2θB
0

jθB � θB
0j
r

θB
0 3 f (θB

0
)r

θB
0φ(θB

0
,ω)

(21)

where

η(ω) ¼ iσ(ω)
ωD

(22)

is a dimensionless parameter containing all the physical char-
acteristics of the graphene, such as the doping level, the
temperature dependence, and the rate of inelastic losses, as
well as the dependence on frequency ω. Integrating by parts
and taking the in-plane 2D gradient on both sides of eq 21, we
find the more symmetric expression

εB(θB,ω) ¼ εB
ext
(θB,ω)þ η(ω)

Z
d2θB

0
M(θB, θB

0
) 3 εB(θB

0
,ω) (23)

where

εB(θB,ω) ¼ �
ffiffiffiffiffiffiffiffiffi
f (θB)

q
rθBφ(θB,ω)

and

M(θB, θB
0
) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f (θB)f (θB

0
)

q
rθBXrθB

1

jθB � θB
0j

is a symmetric matrix that is invariant under exchange of its
arguments: M(θB,θB0) = M(θB0 ,θB). This implies that M is a real,
symmetric operator that admits a complete set of real eigen-
values 1/ηj and orthonormalized eigenvectors εBj satisfying

εBj(θB) ¼ ηj

Z
d2θB

0
M(θB, θB

0
) 3 εBj(θB

0
)

Z
d2θBεBj(θB) 3 εBj0 (θB) ¼ δjj0

and

∑
j

εBj(θB)XεBj(θB
0
) ¼ δ(θB � θB

0
)I2

where I2 is the 2 � 2 unit matrix.
The solution to eq 23 can be expressed in terms of these

eigenmodes as

εB(θB,ω) ¼ ∑
j

cj
1 � η(ω)=ηj

εBj(θB)

with expansion coefficients

cj ¼
Z
d2θBεBj(θB) 3 εB

ext
(θB,ω) (24)

The potential outside the graphene can be constructed from
φ(θB,ω) through the induced charge

(iσ(ω)=ω)rR 3 f (R)rRφ(R,ω) ¼ (�η=D)rθB 3
ffiffiffiffiffiffiffiffi
f (θ)

p
εB(θ,ω)

Following a procedure similar to the derivation of eq 21, we find

φind(u,ω) ¼ ∑
j

cj
1=ηj � 1=η(ω)

jj(u) (25)

where

jj(u) ¼
Z

d2θB
0

ju � θ0jrθB
0 3

ffiffiffiffiffiffiffiffiffiffi
f (θB

0
)

q
εBj(θB

0
) (26)

and we have defined the reduced 3D coordinate vector u = r/D.
Classical Screened Interaction Potential. The screened interaction

Wind(r,r0 ,ω) is defined as the potential produced at r by a unit
point charge placed at r0 and oscillating in time as exp(�iωt).
We use the formalism introduced in the previous paragraph
and consider in eq 24 the point-charge external potential
φ
ext(θB,ω) = (1/D)/|θB � u0|. Integrating by parts, we find

cj = jj(u0)/D (see eq 26), which upon insertion into eq 25 yields

W ind(u,u0 ,ω) ¼ 1
D∑j

1
1=ηj � 1=η(ω)

jj(u)jj(u
0) (27)

The well-known symmetry Wind(u,u0 ,ω) = Wind(u0 ,u,ω) is appar-
ent in eq 27. For an arbitrary external charge distribution
Fext(r,t), which we express in frequency space as

Fext(r,ω) ¼
Z
dteiωtFext(r, t) (28)

the induced potential can be written using the screened inter-
action as

φind(r,ω) ¼
Z
d3r0W ind(r, r0 ,ω)Fext(r0 ,ω) (29)

Electrostatic Scaling Law for the Plasmon Frequency. The condition
η(ωj) = ηj determines a plasmon frequency of the systemωj for a
specific eigenstate j, subject to the condition ηj < 0 (see below).
This relation has general validity within the electrostatic limit, so
that all the graphene characteristics, including the size of the
structure D, are fully contained within η(ω), and thus, given a
certain shape (e.g., a disk), the eigenvalues ηj can be calculated
once and for all to obtain the plasmon frequency for arbitrary
size or doping.
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A powerful electrostatic law can be formulated by assuming
the Drude model for the conductivity of graphene eq 4. The
plasmon frequency is then given by ωj � i/2τ, where

ωj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2EF

�πηjp
2D

� 1
4τ2

s
� γj

e

p

ffiffiffiffiffi
EF
D

r
(30)

and we have defined the real number (provided ηj < 0)

γj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi�πηj

p
(31)

to obtain the rightmost expression in eq 30.
Classical Approach to the Electron Energy-Loss Probability. We con-

sider an electron moving with constant velocity vector v along
the straight-line trajectory r = r0 þ vt passing near or through a
graphene structure, as shown in Figure 6. The energy transferred
from the electron to the graphene (ΔE > 0) can be written as5

ΔE ¼
Z
dωpωΓ(ω)

where

Γ(ω) ¼ e

πp

Z
dt Imfe�iωtφind(r0 þ vt,ω)g (32)

is the loss probability per unit of frequency range, and φind is theω
component of the potential inducedby the electron along its path.
The external charge density associated with the moving electron
reduces to Fext(r,t) = �e δ(r � r0 � vt). Using this expression
together with eqs 27 to 29 and 32, the loss probability is found to
be

Γ(ω) ¼ e2

πpω2D∑j
Im

1
1=η(ω) � 1=ηj

( )
Gj(ζ) (33)

where ζ = ωD/ν,

Gj(ζ) ¼
�����ζ
Z

dl eiζl jj(u0 þ l v̂)

�����
2

(34)

we adopt the notation u = r/D, and the integral is over the path
length l (in units of D) along the velocity vector direction.

We now concentrate on a specific plasmon resonance j and
neglect contributions to the loss probability arising frommodes
other than this particular one. For simplicity, we work within the
Drude model and assume a small plasmon width τ�1 , ωj.
Using eqs 4 and 22 in eq 33 and integrating overω to cover the
plasmon peak area, we find

Pclaj ¼
Z
j

dωΓ(ω) � 1
2π2γ3j

effiffiffiffiffiffiffiffi
EFD

p Gj γj
e
ffiffiffiffiffiffiffiffi
EFD

p
pv

 !
(35)

for the probability of exciting plasmon jby the incident electron.
Finally, we can recast eq 35 into the scale-invariant form of eq 8,
using the definitions of eqs 9 and 10, and further defining the
dimensionless scaled plasmon electric potential

fj ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πγj

p jj (36)

We show in Figure 7 two examples of loss spectra for 100 eV
electrons passing near a 100 nm graphene disk. The lowest-
energy plasmon features for bothm = 0 andm = 1 symmetries

are clearly separated from other peaks in their corresponding
spectral regions, thus justifying the approximation of eq 35. We
further compare in thisfigure the full solutionofMaxwell's equations
(solid curves) with the result obtained from eq 33 using a single
plasmon term for each of the lowest-orderm = 0 andm = 1modes,
with ηj = �0.024 and �0.073, respectively, and with jj calculated
fromtheplasmonpotential,which is normalizedasexplainedbelow.

Quantum Approach to the Screened Interaction Potential. The linear
screened interaction potential can be obtained by solving the
density matrix (eq 17), which yields the solution F = |ξæÆξ|, with
|ξæ given by eqs 14 and 19. Expressing g(t) in frequency spaceω,
we can then write

ξ(t) ¼ �1
p

Z
d3r

Z
dω
2π

φj(r)F
ext(r,ω)

ei(ωj � ω)t

ωj �ω � i=2τ

where Fext(r,ω) is defined by eq 28. Now, calculating the
induced potential from its expectation value

φind(r, t) ¼ Æξj(aþ þ a)φj(r)jξæ
we find

φind(r, t) ¼
Z
dω
2π

e�iωt
Z

d3r0W ind(r, r0 ,ω)Fext(r0 ,ω)

(or equivalently, eq 29), where

W ind(r, r0 ,ω) ¼ 2ωj

p

φj(r)φj(r
0)

(ω þ i=2τ)2 �ω2
j

(37)

is the quantum-mechanical counterpart of eq 27.
Normalization of the Plasmon Potential. In theDrudemodel (eq4),

assuming a dominant plasmon mode contributing to the re-
sponse with frequency given by eq 7, we find that eqs 27 and 37
are identical under the assumption ωjτ .1, provided we take

φj ¼
e2EF
D3

 !1=4

fj (38)

where fj is the dimensionless scaled plasmon electric potential
defined by eq 36, which is independent of the doping level EF
and the size of the structure D. As a self-consistency test, we
calculate the plasmon excitation probability to first-order per-
turbation from the quantum model, which yields

Pj ¼ e2

p2

�����
Z

dteiωj tφj(r0 þ vt)

�����
2

(39)

Figure 6. Electron moving with velocity ν and crossing a
graphene structure of characteristic size D.

Figure 7. Energy-loss spectra for 100 eV electrons passing
near a graphene disk along the trajectories shown in the
inset. The graphene parameters are indicated by labels.
Solid curves are calculated with the boundary-element
method53 using the local-RPA model for the graphene
conductivity.54 The results obtained from the semianalytical
model of eq 33 are represented by symbols for the lowest-
orderm = 0 andm = 1 modes, in excellent agreement with
the solid curves (see also Figure 2).
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Indeed, this equation coincides with the classsical result of
eq 35, provided eq 38 is satisfied.

In practice we obtain the plasmon potential φj as follows:
first, we calculate the potential induced by a dipole placed near
the graphene and oscillating at frequency ωj using the bound-
ary-element method53 (BEM) for fixed values of EF and D. The
resulting potential must be equal to φj times an unknown
constant; we deduce this constant by calculating the plasmon
excitation probability from eq 39 and by comparing the result to
a well-established classical calculation of the loss probability
based upon BEM. 5 Finally, we use the scaling laws of eqs 30 and
38 to obtain ωj and φj for any desired values of EF and D,
assuming the validity of the Drudemodel. We have verified that
this procedure yields, within the accuracy of the BEM method,
the same scaled potentials fj and jj for different initial values of
EF andD. Incidentally, once φj is calculated, eq 39 provides a fast
way of obtaining loss probabilities for arbitrary values of the
electron velocity, the size of the structure, and the doping
conditions.

Analytical Expressions for the Electron Energy-Loss Probability in
Homogeneous Graphene. In the electrostatic limit, the loss prob-
ability of electrons moving either parallel or perpendicularly
with respect to an extended sheet of homogeneously doped
graphene can be expressed in terms of the Fresnel reflection
coefficient for p polarized light, as shown in eqs 2 and 3. Indeed,
for a parallel trajectory, we can readily use the well-established
dielectric formalism (e.g., eq 25 of ref 5 in the cf¥ limit), which
directly yields eq 3. Likewise, for a perpendicular trajectory, we
can write the bare potential of the moving electron in (k ),ω)
space as

φext(k ) , z) ¼
�4πe
v

eiωz=v

k2) þω2=v2

Inserting this expression into eq 20 andwriting the 2D Coulomb
interaction as (2π/k ))e

�k )|z|, we find the induced potential

φind(k ) , z) ¼ �rpe�k ) jzjφind(k ) , 0)

which, together with eq 32, allows us towrite the loss probability
for a perpendicular trajectory as shown in eq 2. It should be noted
that the external field produced on the graphene by an electron
that is specularly reflected at the graphene plane is also given by
the above expression for φind (k ),0), and consequently, eq 2 yields
the loss probability for such reflected trajectory as well.
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